Course description

1 General information

Course name	Refrigeration and AC plants
Course code	M5-RAC
Level of study (B.Sc, M.Sc., Ph.D.)	B.Sc.
ECTS	5
Course manager	Dr hab. inż. Beata Niezgoda-Żelasko, prof. PK M5
Course length	One (1) semester
Coordinator for international programs	erasmus@mech.pk.edu.pl

2 Prerequisites

None

2 Program

Туре	Lectures	Classes	Labs	Computer labs	Project	Seminar
Hours	15	30				

3 Contents

	Lectures				
No.		Hours			
1	Refrigeration systems and applications	1			
2	Compression and sorbent refrigeration system	3			
3.	Overview of refrigerants and their environmental impact	2			
4.	Heat pumps –types and application	2			
5.	Air-conditioning systems	2			
6.	Heat comfort, indoor air quality parameters	1			
7.	Humid air properties, Mollier diagram	2			
8.	Heat balance for building	1			
9.	Elements of refrigeration and air-conditioning devices	1			

Classes				
No.		Hours		
1	Determination of the thermodynamic parameters of refrigerant using log(p)-i diagram	4		
2	Designing single-stage vapor compression refrigeration system	6		
3.	Adjusting devices and fittings for refrigeration system	3		
4.	Designing two-stage vapor compression refrigeration system	2		
5.	Humid air parameters calculation	6		
6.	Heating, cooling, dehumidifying and humidifying processes calculation and illustrating on a	9		
	Mollier diagram			

3 Learning Outcomes (skills and knowledge):

- The student is able to illustrate vapor compression refrigeration cycle on log(p)-i diagram.
- The student knows the requirements for refrigerants.
- The student knows the difference between refrigerator, heat pump and air conditioning.
- The student is able to calculate the coefficient of performance of heat pump, refrigerator and air conditioning systems.
- The student is able to define the basic humid air parameters.

• The student is able to illustrate heating, cooling, dehumidifying and humidifying processes on a Mollier diagram.

4 Assessment policy (examination):

• Written exam (theoretical) and written colloquium (solving examples)

5 Literature

- 1. Althouse A.D. et al., Modern Refrigeration and Air Conditioning, Goodheart-Willcox 2016
- 2. Ashrae Handbook: HVAC Applications, Amer Society of Heating 2015
- 3. Ashrae Handbook: HVAC Systems and Equipment, Amer Society of Heating 2016
- 4. Ashrae Handbook: Refrigeration, Amer Society of Heating 2018
- 5. Jones W.P., Air Conditioning Engineering, Butterworth-Heinemann 2001
- 6. Wang S.K., Handbook of Air Conditioning and Refrigeration, McGraw-Hill Education 2000

15. Wirry odu - Telyho