Course description

1 General information

Course name	Introduction to automatics
Course code	M6-IA
Level of study (B.Sc, M.Sc., Ph.D.)	B.Sc.
ECTS	6
Course manager	Ph.D. Eng. Adam Slota, Char of Production
	Engineering
Course length	One (1) semester
Coordinator for international programs	erasmus@mech.pk.edu.pl

2 Prerequisites

☐ Knowledge of: complex numbers, linear ordinary differential equations, Laplace transform

2 Program	Lectures	Classes	Labs	Computer	Project	Seminar
Type				labs		
Hours	30	15	15	0	15	0

3 Contents

Lect	ures	
No.		Hours
1	Classification of control systems: linear/nonlinear, time invariant/time varying, lumped/distributed parameters; signals. Structures of control systems	2
2	Transfer function and time responses: unit impulse, step and ramp. Transfer function for multidimensional systems.	4
3	Transfer function and time responses for first order and second order systems. Performance criteria for second order systems: rise time, settling time, overshoot.	4
4	Frequency response, Bode plots.	4
5	Block diagrams algebra.	3
6	Basic control actions: on-off control, proportional, integral and derivative.	3
7	Control systems with PID controllers, PID tuning	2
8	Stability of control systems, criteria of stability.	4
9	State space description of control systems.	4

Clas	sses	
No.		Hours
1	Mathematical models of mechanical, electrical and electromechanical systems.	2
2	Transfer function, time responses and frequency responses of basic dynamic components.	2
3	Determination of representative transfer function for different structures of control systems.	3
4	Determination of frequency responses	2
5	Stability verification using stability criteria	2
6	Study of influence of PID components on control system behavior	2
7	Examples of state space equations	2

Labs		
No.		Hours
1	Plant parameters identification with the use of step response	2
2	Automatic control system of an inertial plant with the use of P controller	2
3	Automatic control system of an inertial plant with the use of PID controller	4

4	Frequency responses of a drive	3
5	Static accuracy of a drive in CNC machine	2
6	Dynamic accuracy of a drive in CNC machine	2
7	Examples of state space equations	
Con No.	nputer Labs	Hours
1	Introduction to Simulation and Control design with the use of LabVIEW	3
2	Analysis of steady state accuracy of control systems (static and astatic control systems)	4
3	Design of I-PD controller of robot arm drive with DC motor	4
4	Design of state feedback controller for Segway vehicle	4

3 Learning Outcomes (skills and knowledge):

☐ The student knows basic structures of control systems
☐ The student has knowledge about mathematical modelling of control system components
☐ The student is able to identify the type of system components based on its time response
☐ The student has knowledge about control system performance criteria
☐ The student is able to verify stability of a control system
☐ The student is able to find parameters of PID controller
☐ The student is able to find parameters of state feedback controller
4 Assessment policy (examination):
☐ A test with open tasks
☐ Homework and active participation in classes
110 However and active participation in classes
☐ Reports form labs and computer labs

5 Literature

- 1. K. Ogata "Modern control engineering", Prentice Hall, New York, 1997.
- 2. Z. Bubnicki "Modern control theory"; Springer-Verlag, Berlin: Springer, 2005
- 3. Rames C. Panda (Ed) "Introduction to PID Controllers Theory, Tuning and Application to Frontier Areas" InTech 2012, open access book available at https://www.intechopen.com/books/introduction-to-pid-controllers-theory-tuning-and-application-to-frontier-areas
- 4. T. Wescott "PID Without a PhD", Wescott Design Services, available at http://www.wescottdesign.com/articles/pid/pidWithoutAPhd.pdf