Course description

1 General information

Course name	Engineering Thermodynamics
Course code	
Level of study (B.Sc, M.Sc., Ph.D.)	B.Sc.
ECTS	4
Course manager	Prof. dr hab. inż Piotr Cyklis M5
Course length	One (1) semester
Coordinator for international programs	erasmus@mech.pk.edu.pl

2 Prerequisites

• Engineering Mathematics

2 Program

Туре	Lectures	Classes	Labs	Computer labs	Project	Seminar
Hours	15	15	15			

3 Contents

Lectures				
No.		Hours		
1	Thermodynamic parameters and functions, equation of state for gas	1		
2	First and second law of thermodynamics, work, heat, entropy	2		
3	Characteristic processes, heat work and flow work	2		
4	Mixtures, parameters and functions	1		
5	Thermodynamic cycles Carnot, Otto etc.	2		
6	Steam parameters and state functions, steam charts and software	2		
7	Clausius Rankine and Linde cycles	1		
8	Wet gases, Molliere diagram, air conditioning basics	2		
9	Elementary combustion – thermodynamic and stechiometric calculations	2		

Classes				
No.		Hours		
1	State of matter calculations	3		
2	Process energy analysis	3		
3	Thermodynamic cycle calculation	3		
4	Steam calculations	3		
5	Wet air calculation	3		

Labs				
No.		Hours		
1	Temperature measurements	3		
2	Pressure measurements	3		
3	Wet gases measurements	3		
4	Steam measurements and calculations	3		
5	Fluid flow measurements (different methods and comparison)	3		

3 Learning Outcomes (skills and knowledge):

• The student is able to define state of matter, system and components of thermal energy

- The student knows the basics of the energy transformation process using thermodynamic cycles.
- The student is able to calculate energy of gas, steam and wet gas.
- The student knows basic state and calorific equation for main energy carriers.
- The student is able to measure thermodynamic parameters.
- The student knows elementary laws of combustion.

4 Assessment policy (examination):

• Laboratory reports 30%, written exam (theoretical questions - written) 30%, solving examples 40% (written colloquium)

5 Literature

- 1. Witold Szewczyk, Lectures in Engineering Thermodynamics -Selected Problems AGH Kraków 2009
- 2. Dilip Kondepudi, Ilya Prigogine "Modern Thermodynamics" John Wiley & Sons NY 1998
- 3. Adrian Bejan "Advanced Engineering Thermodynamics John Wiley & Sons NY 2016